Configuring RADIUS Authentication with WPA2-Enterprise

Cisco Meraki MR access points offer a number of authentication methods for wireless association, including the use of external authentication servers to support WPA2-Enterprise. This article outlines Dashboard configuration to use a RADIUS server for WPA2-Enterprise authentication, RADIUS server requirements, and an example server configuration using Windows NPS.

Overview

WPA2-Enterprise with 802.1x authentication can be used to authenticate users or computers in a domain. The supplicant (wireless client) authenticates against the RADIUS server (authentication server) using an EAP method configured on the RADIUS server. The gateway APs (authenticator) role is to send authentication messages between the supplicant and authentication server. This means the RADIUS server is responsible for authenticating users.

APs perform EAPOL exchanges between the supplicant and convert these to RADIUS Access-requests messages, which are sent to the RADIUS server's IP address and UDP port specified in Dashboard. Gateway APs need to receive a RADIUS Access-accept message from the RADIUS server in order to grant the supplicant access to the network.

For best performance, it is recommended to have the RADIUS server and gateway APs located within the same layer-2 broadcast domain to avoid firewall, routing, or authentication delays. Keep in mind the AP is not responsible for authenticating wireless clients and acts as an intermediary between clients and the RADIUS server.

The following image provides a detailed breakdown of the PEAP with MSCHAPv2 association process:
Supported RADIUS Attributes

When WPA2-Enterprise with 802.1X authentication is configured, the following attributes are present in the Access-Request messages sent from the Cisco Meraki access point to the customer's RADIUS server.
Note: Please refer to RFC 2865 for details on these attributes, additional notes for certain attributes are included below.

- User-Name
- NAS-IP-Address
- NAS-Port
- **Called-Station-ID**: Contains (1) the Meraki access point's BSSID (all caps, octets separated by hyphens) and (2) the SSID on which the wireless device is connecting. These 2 fields are separated by a colon. Example: "AA-BB-CC-DD-EE-FF:SSID_NAME".

Note: BSSID MAC addresses will be different for each configured SSID. Additional information is available for [Calculating Cisco Meraki BSSID MAC Addresses](#).

- **Calling-Station-ID**: Contains the MAC address of the wireless device (all caps, octets separated by hyphens). Example: "AA-BB-CC-DD-EE-FF".
- Framed-MTU
- NAS-Port-Type
- Connect-Info

The following attributes are honored by Cisco Meraki when received in an Access-Accept message from the customer's RADIUS server to the Cisco Meraki access point:

- **Tunnel-Private-Group-ID**: Contains the VLAN ID that should be applied to a wireless user or device. (This can be configured to override VLAN settings that an administrator has configured for a particular SSID in the Cisco Meraki Cloud Controller.)
- **Tunnel-Type**: Specifies the tunneling protocol. Example: VLAN.
- **Tunnel-Medium-Type**: Sets the transport medium type used to create the tunnel. Example: 802 (which includes 802.11).
- **Filter-Id / Reply-Message / Airespace-ACL-Name / Aruba-User-Role**: Any of these attributes can be used to convey a policy that should be applied to a wireless user or device. (The attribute type should match that which is configured under the Configure tab > Group policies page in the Cisco Meraki Cloud Controller. The attribute value should match the name of a policy group configured on that page.)

RADIUS Configuration

The most common EAP configuration is PEAP with MSCHAPv2, which prompts users for credentials (either user or machine authentication).
RADIUS Server Requirements

There are many server options available for RADIUS, which should work with MR access points if configured correctly. Please refer to your RADIUS server documentation for specifics, but the key requirements for WPA2-Enterprise with Meraki are as follows:

- The server must host a certificate from a Certificate Authority (CA) trusted by clients on the network.
- All gateway APs broadcasting the WPA2-Enterprise SSID must be configured as RADIUS clients/authenticators on the server, with a shared secret.
- The RADIUS server must have a user base to authenticate against.

Once the RADIUS server is configured, refer to the Dashboard Configuration section below for instructions on how to add your RADIUS server to Dashboard.

User vs. Machine Authentication

The most common method of authentication with PEAP-MSCHAPv2 is user auth, in which clients are prompted to enter their domain credentials. It is also possible to configure RADIUS for machine authentication, in which the computers themselves are authenticated against RADIUS, so the user doesn't need to provide any credentials to gain access. Machine auth is typically accomplished using EAP-TLS, though some RADIUS server options do make it simple to accomplish machine auth using PEAP-MSCHAPv2 (including Windows NPS, as outlined in the example config below).

Example RADIUS Configuration (Windows NPS + AD)

The following example configuration outlines how to set up Windows NPS as a RADIUS server, with Active Directory acting as a userbase:

1. Add the Network Policy Server (NPS) role to Windows Server.
2. Add a trusted certificate to NPS.
3. Add APs as RADIUS clients on the NPS server.
4. Configure a policy in NPS to support PEAP-MSCHAPv2.
5. (Optional for machine auth) Deploy PEAP-MSCHAPv2 wireless network settings to domain member computers using Group Policy.
Add the Network Policy Server (NPS) Role to Windows Server

Microsoft's RADIUS server offering for Windows Server 2008 and later is their Network Policy Server (NPS). Please refer to the following two Microsoft documents for instructions on adding the NPS role to Windows Server, and registering the new NPS server in Active Directory (allowing it to use AD as its userbase):

- Installing NPS.
- Registering NPS in AD.

Add a Trusted Certificate to NPS

A RADIUS server must host a certificate that allows both network clients and Meraki APs to validate the server's identity. There are three options for this certificate:

- Acquire a certificate from a trusted Certificate Authority
 As long as the CA used is trusted by clients on the network, a certificate can be purchased and uploaded into NPS to accomplish and server identity verification (required by clients). Common examples of trusted CAs include GoDaddy and VeriSign.

- Implement a Public Key Infrastructure and generate a certificate (advanced)
 A PKI can be used on the network to issue certificates trusted by clients on the network. A strong understanding of PKI is recommended for this option.

- Generate a self-signed certificate and turn off client server validation (insecure)
 A self-signed certificate can be generated for testing/lab purposes, though clients will not trust a self-signed certificate and will need to have server validation disabled in order to connect.
 This option is not recommended for production deployment, due to dramatically reduced security.

Once a certificate has been acquired, please refer to Microsoft documentation for instructions on how to import a certificate.

Add APs as RADIUS Clients on the NPS Server

In this scenario, APs communicate with clients and receive their domain credentials, which the AP then forwards to NPS. In order for an AP's RADIUS access-request message to be processed by NPS, it must first be added as a RADIUS client/authenticator by its IP address. Since only gateway APs have an IP address on the LAN, all gateway APs in the network must be added to NPS as RADIUS clients.

To quickly gather all gateway APs' LAN IP addresses, navigate to Wireless > Monitor > Access points in Dashboard, ensure that the "LAN IP" column has been added to the table, and take note of all LAN IPs listed. APs with a LAN IP of "N/A" are repeaters, they do not need to be added as RADIUS clients:
Once a list of gateway APs' LAN IPs has been gathered, please refer to Microsoft's documentation for instructions on adding each AP as a client in NPS. Take note of the shared secret configured in NPS, this will be referenced in Dashboard.

Note: To save time, entire subnets can also be added to NPS as RADIUS clients, and any requests coming from that subnet will be processed by NPS. This is only recommended if all APs are on their own management VLAN and subnet, to reduce security risks.

Configure a Policy in NPS to Support PEAP-MSCHAPv2

NPS must be configured to support PEAP-MSCHAPv2 as its authentication method.

This is accomplished in three steps, outlined below for NPS in Windows Server 2008:

1. Create an NPS Policy
2. Change the Policy Process Order
3. Disable Auto Remediation

Creating an NPS Policy
1. Open the Network Policy Server console.
2. Select NPS(Local), so you see the Getting Started pane.
3. Select RADIUS server for 802.1X Wireless or Wired Connections in the Standard Configuration drop down.
4. Click Configure 802.1X to begin the Configure 802.1x Wizard.
5. When the Select 802.1X Connections Type window appears select the radio button Secure Wireless Connections and type a Name: for your policy or use the default. Click Next.
6. Verify the APs you added as RADIUS clients on the Specify 802.1X switches window. Click Next.
7. For Configure an Authentication Method select Microsoft: Protected EAP (PEAP).
8. Click Configure to review the Edit Protected EAP Properties. The server certificate should be in the Certificate issued drop down. Make sure Enable Fast Reconnect is checked and EAP type is Secure password (EAP-MSCHAPv2). Click OK. Click Next.
9. When the Specify User Groups window appears click Add.
10. Type or find the Domain Users group. This group should be located in the same domain as your RADIUS server. Note: If RADIUS is being used for Machine Authentication, find the Domain Computers group instead.
11. When the group is added click OK. Click Next.
12. Click Next on Configure a Virtual LAN (VLAN) window.
13. When then Completing New IEEE 802.1X Secure Wired and Wireless Connections and RADIUS clients appears click Finish.

Change the Policy Process Order
1. Navigate to Policies>Connection Request Policies. Right click the wireless policy and Move Up so it is process first.
2. Navigate to Policies>Network Policies. Right click the wireless policy and Move Up so it is process first.

Disable Auto Remediation
2. On the Setting tab for the policy uncheck the box Enable auto-remediation of client computers and click OK.

The following image outlines an example of an NPS policy that supports user authentication with PEAP-MSCHAPv2:
Secure Wireless Connections

Conditions - If the following conditions are met:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAS Port Type</td>
<td>Wireless - Other OR Wireless - IEEE 802.11</td>
</tr>
<tr>
<td>Windows Group</td>
<td>MERAKI\Domain Users</td>
</tr>
</tbody>
</table>

Settings - Then the following settings are applied:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ignore User Dial-in Properties</td>
<td>True</td>
</tr>
<tr>
<td>Access Permission</td>
<td>Grant Access</td>
</tr>
<tr>
<td>Extensible Authentication Protocol Method</td>
<td>Microsoft: Protected EAP (PEAP)</td>
</tr>
<tr>
<td>Authentication Method</td>
<td>EAP OR MS-CHAP v1 CR MS-CHAP v1 (User can ...</td>
</tr>
<tr>
<td>NAP Enforcement</td>
<td>Allow full network access</td>
</tr>
<tr>
<td>Update Noncompliant Clients</td>
<td>False</td>
</tr>
<tr>
<td>Framed-Protocol</td>
<td>PPP</td>
</tr>
<tr>
<td>Service Type</td>
<td>Framed</td>
</tr>
</tbody>
</table>

(Optional) Deploy a PEAP Wireless Profile using Group Policy

For a seamless user experience, it may be ideal to deploy a PEAP wireless profile to domain computers so users can easily associate with the SSID. Though optional for user auth, this is strongly recommended for machine authentication.

The following instructions explain how to push a PEAP wireless profile to domain computers using a GPO, on a Domain Controller running Windows Server 2008:

1. Open the domain **Group Policy Management** snap-in.
2. Create a new GPO or use an existing GPO.
4. Right Click **Wireless Network (IEEE 801.X) Policies** and choose **Create a New Windows Vista Policy**.
5. Provide a **Vista Policy Name**.
6. Click **Add** for **Connect to available networks**.
7. Choose **Infrastructure**.
8. On the **Connection** tab, provide a **Profile Name** and enter the SSID of the wireless network for **Network Name(s)**. Click **Add**.
9. Click the **Security** tab. Configure the following:
- **Authentication**: WPA2-Enterprise or WPA-Enterprise
- **Encryption**: AES or TKIP
- **Network Authentication Method**: Microsoft: Protected EAP (PEAP)
- **Authentication mode**: Computer Authentication (for machine auth)

10. Click **Properties**.

11. For **Trusted Root Certification Authorities** select the check box next to the appropriate Certificate Authorities and click **OK**.
12. Click **OK** to close out and click **Apply** on wireless policy page to save the settings.

13. Apply the GPO to the domain or OU containing the domain member computers (refer to Microsoft documentation for details).

Dashboard Configuration

Once a RADIUS server has been set up with the appropriate requirements to support authentication, the following instructions explain how to configure an SSID to support WPA2-Enterprise, and authenticate against the RADIUS server:

1. In Dashboard, navigate to **Wireless > Configure > Access control**.
2. Select your desired SSID from the **SSID** drop down (or navigate to **Wireless > Configure > SSIDs** to create a new SSID first).

3. For **Association requirements** choose **WPA2-Enterprise with my RADIUS server.**

4. Under **RADIUS servers** click **Add a server**

5. Enter the **Host** (IP address of your RADIUS server, reachable from the access points), **Port** (UDP port the RADIUS server listens on for Access-requests; 1812 by default) and **Secret** (RADIUS client shared secret):

<table>
<thead>
<tr>
<th>#</th>
<th>Host</th>
<th>Port</th>
<th>Secret</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.0.0.2</td>
<td>1812</td>
<td>*********</td>
</tr>
</tbody>
</table>

6. Click the **Save Changes** button.

Aside from the RADIUS server requirements outlined above, all authenticating APs will need to be able to contact the IP address and port specified in Dashboard. Make sure that your APs all have network connectivity to the RADIUS server, and no firewalls are preventing access.

VLAN Tagging Options

Dashboard offers a number of options to tag client traffic from a particular SSID with a specific VLAN tag. Most commonly, the SSID will be **associated with a VLAN ID**, so all client traffic from that SSID will be sent on that VLAN.

With RADIUS integration, a VLAN ID can be embedded within the RADIUS server's response. This allows for dynamic VLAN assignment based on the RADIUS server's configuration. Please refer to our documentation regarding **Tagging Client VLANs with RADIUS Attributes** for configuration specifics.

Testing RADIUS from Dashboard

Dashboard has a built-in RADIUS test utility, to ensure that all access points (at least those broadcasting the SSID using RADIUS) can contact the RADIUS server:

1. Navigate to **Wireless > Configure > Access control**.
2. Ensure that WPA2-Enterprise was already configured based on the [instructions in this article](#).
3. Under **RADIUS servers**, click the **Test** button for the desired server.
4. Enter the credentials of a user account in the **Username** and **Password** fields.
5. Click **Begin test**.
6. The window will show progress of testing from each access point (AP) in the network, and then present a summary of the results at the end.
 - **APs passed**: Access points that were online and able to successfully authenticate using the credentials provided.
 - **APs failed**: Access points that were online but unable to authenticate using the credentials provided. Ensure the server is reachable from the APs, the APs are added as clients on the RADIUS server.
 - **APs unreachable**: Access points that were not online and thus could not be tested with.
RADIUS Accounting

Optionally, RADIUS accounting can be enabled on an SSID that's using WPA2-Enterprise with RADIUS authentication. When enabled, "start" and "stop" accounting messages are sent from the AP to the specified RADIUS accounting server.

The following instructions explain how to enable RADIUS accounting on an SSID:

1. Navigate to Wireless > Configure > Access control and select the desired SSID from the dropdown menu.
2. Under RADIUS accounting, select RADIUS accounting is enabled.
3. Under RADIUS accounting servers, click Add a server.
 Note: Multiple servers can be added for failover, RADIUS messages will be sent to these servers in a top-down order.
4. Enter the details for:
 ◦ Host (the IP address the APs will send RADIUS accounting messages to)
 ◦ Port (the port on the RADIUS server that is listening for accounting messages; 1813 by default)
 ◦ Secret (the shared key used to authenticate messages between the APs and RADIUS server)
5. Click Save changes.

At this point, "Start" and "Stop" accounting messages will be sent from the APs to the RADIUS server whenever a client successfully connects or disconnects from the SSID, respectively.

Cisco Meraki access points can be configured to provide enterprise WPA2 authentication for wireless networks using Cisco Identity Services Engine (ISE) as a RADIUS server. This article will cover instructions for basic integration with this platform. For more detailed information on how to configure Cisco ISE, please refer to the Cisco Identity Services Engine User Guide.

Configuring WPA2-Enterprise with RADIUS using Cisco ISE

Prerequisites

- Cisco ISE installed and reachable from the APs
- An SSID configured to use WPA2-Enterprise pointing to the Cisco ISE server

Installing Server Certificates

After installation, Cisco ISE generates, by default, a self-signed local certificate and private key, and stores them on the server. This certificate will be used by default for WPA2-Enterprise. In a self-signed certificate, the hostname of Cisco ISE is used as the common name (CN) because it is required for HTTPS communication.
Adding Managed Network Devices

1. In Cisco ISE, choose Administration > Network Resources > Network Devices.
2. From the Network Devices navigation pane on the left, click Network Devices.
3. Click Add, or check the check box next to a device and click Edit to edit it or click Duplicate to create a duplicate entry. You can alternatively click Add new device from the action icon on the Network Devices navigation pane or click a device name from the list to edit it.
4. In the right pane, enter the Name and IP Address.
5. Check the Authentication Settings check box and define a Shared Secret for RADIUS authentication. This must match the Secret entered for the RADIUS server when configuring the SSID in Dashboard.
6. Click Submit.

Enabling Policy Sets

Cisco ISE supports policy sets, which allows grouping sets of authentication and authorization policies. As opposed to the basic authentication and authorization policy model, which is a flat list of authentication and authorization rules. Policy sets allow for logically defining an organization’s IT business use cases into policy groups or services, such as VPN and 802.1X. This makes configuration, deployment, and troubleshooting much easier.

1. In Cisco ISE, choose Administration > System > Deployment > Settings > Policy Sets.
2. Click the Default policy. The default policy is displayed in the right.
3. Click the plus (+) sign on top and choose Create Above.
4. Enter the Name, Description and a Condition for this group policy.
5. Define the Authentication policy.
6. Click Submit. After configuring a policy set, Cisco ISE will log out any administrators. Log in again to access the Admin portal.

Configuring an Authentication Policy

1. In Cisco ISE, select the Actions menu and click Insert New Rule Above.
2. Give the sub-rule a Name (Example: Dot1X).
3. Click the small window icon to open the Conditions menu.
5. Select Network Access > Eap Authentication.
6. Leave the operator box set to EQUALS.
7. In the last box select EAP-MSCHAPv2.

Note: Using a self-signed certificate is not recommended for RADIUS, in order to use the default self-signed cert, clients will need to be configured to not validate the RADIUS server’s identity. Please refer to our RADIUS documentation for certificate options on the RADIUS server.
8. In the **Use** field, select [Active Directory as the identity store](#). Configure the Active Directory integration as appropriate for the desired deployment.