Meraki Auto VPN General Best Practices

Auto VPN Best Practices

The best practices listed here focus on the most common deployment scenario, but is not intended to preclude the use of alternative topologies. The recommended SD-WAN architecture for most deployments is as follows:

- MX at the datacenter deployed as a one-armed concentrator
- Warm spare/High Availability at the datacenter
- OSPF route advertisement for scalable upstream connectivity to connected VPN subnets
- Datacenter redundancy
- Split tunnel VPN from the branches and remote offices
- Dual WAN uplinks at all branches and remote offices

Auto VPN at the Branch

Before configuring and building Auto VPN tunnels, there are several configuration steps that should be reviewed.

WAN Interface Configuration

While automatic uplink configuration via DHCP is sufficient in many cases, some deployments may require manual uplink configuration of the MX security appliance at the branch. The procedure for assigning static IP addresses to WAN interfaces can be found in our MX IP assignment documentation.

Some MX models have only one dedicated Internet port and require a LAN port be configured to act as a secondary Internet port via the device local status page if two uplink connections are required. MX models that require reconfiguring a LAN port as a secondary Internet port currently include the MX64 line, MX67 line, and MX100 devices. This can also be verified per-model in our installation guides online. This configuration change can be performed on the device local status page on the Configure tab.

Subnet Configuration

Auto VPN allows for the addition and removal of subnets from the Auto VPN topology with a few clicks. The appropriate subnets should be configured before proceeding with the site-to-site VPN configuration.

Hub Priorities

Hub priority is based on the position of individual hubs in the list from top to bottom. The first hub has the highest priority, the second hub the second highest priority, and so on. Traffic destined for subnets advertised from multiple hubs will be sent to the highest priority hub that a) is advertising the subnet and b)
currently has a working VPN connection with the spoke. Traffic to subnets advertised by only one hub is sent directly to that hub.

Configuring Allowed Networks

To allow a particular subnet to communicate across the VPN, locate the local networks section in the Site-to-site VPN page. The list of subnets is populated from the configured local subnets and static routes in the Addressing & VLANs page, as well as the Client VPN subnet if one is configured.

To allow a subnet to use the VPN, set the Use VPN drop-down to yes for that subnet.

Auto VPN at the Data Center

Deploying a One-Armed Concentrator

A one-armed concentrator is the recommended datacenter design choice for an SD-WAN deployment. The following diagram shows an example of a datacenter topology with a one-armed concentrator:

![Datacenter topology diagram]

NAT Traversal

Whether to use Manual or Automatic NAT traversal is an important consideration for the VPN concentrator.

Use manual NAT traversal when:

- There is an unfriendly NAT upstream
- Stringent firewall rules are in place to control what traffic is allowed to ingress or egress the datacenter
- It is important to know which port remote sites will use to communicate with the VPN concentrator

If manual NAT traversal is selected, it is highly recommended that the VPN concentrator be assigned a static IP address. Manual NAT traversal is intended for configurations when all traffic for a specified port can be forward to the VPN concentrator.
Use automatic NAT traversal when:

- None of the conditions listed above that would require manual NAT traversal exist

If automatic NAT traversal is selected, the MX will automatically select a high numbered UDP port to source Auto VPN traffic from. The VPN concentrator will reach out to the remote sites using this port, creating a stateful flow mapping in the upstream firewall that will also allow traffic initiated from the remote side through to the VPN concentrator without the need for a separate inbound firewall rule.

Datacenter Redundancy (DC-DC Failover)

Meraki MX Security Appliances support datacenter to datacenter redundancy via our DC-DC failover implementation. The same steps used above can also be used to deploy one-armed concentrators at one or more additional data centers. For further information about VPN failover behavior and route prioritization, refer to our [DC-DC Failover documentation](#).

This section outlines the steps required to configure and implement warm spare high availability (HA) for an MX Security Appliance operating in VPN concentrator mode.

Topology

The following is an example of a topology that leverages an HA configuration for VPN concentrators:

![Topology Diagram](image)

Behavior

When configured for high availability (HA), one MX is active, serving as the primary, and the other MX operates in a passive, standby capacity. The VRRP protocol is leveraged to achieve failover. Check out our [MX Warm Spare documentation](#) for more information.

MX IP Assignment

In the datacenter, an MX Security Appliance can operate using a static IP address or an address from DHCP. MX appliances will attempt to pull DHCP addresses by default. It is highly recommended to assign static IP addresses to VPN concentrators.
Uplink IPs

Use Uplink IPs is selected by default for new network setups. In order to properly communicate in HA, VPN concentrator MXs must be set to use the virtual IP (vIP).

Virtual IP (vIP)

Virtual IP is an addressing option that uses an additional (third) IP address that is shared by the HA MXs. In this configuration, the MXs will send their cloud controller communications via their uplink IPs, but other traffic will be sent and received by the shared virtual IP address.

MX Data Center Routing

The MX acting as a VPN concentrator in the datacenter will be terminating remote subnets into the datacenter. In order for bi-directional communication to take place, the upstream network must have routes for the remote subnets that point back to the MX acting as the VPN concentrator.

If OSPF route advertisement is not being used, static routes directing traffic destined for remote VPN subnets to the MX VPN concentrator must be configured in the upstream routing infrastructure.

If OSPF route advertisement is enabled, upstream routers will learn routes to connected VPN subnets dynamically.

Failover Times

There are several important failover timeframes to be aware of:

<table>
<thead>
<tr>
<th>Service</th>
<th>Failover Time</th>
<th>Failback Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto VPN Tunnels</td>
<td>30-40 seconds</td>
<td>30-40 seconds</td>
</tr>
<tr>
<td>DC-DC Failover</td>
<td>20-30 seconds</td>
<td>20-30 seconds</td>
</tr>
<tr>
<td>Dynamic Path Selection</td>
<td>Up to 30 seconds</td>
<td>Up to 30 seconds</td>
</tr>
<tr>
<td>Warm Spare</td>
<td>30 seconds or less</td>
<td>30 seconds or less</td>
</tr>
<tr>
<td>WAN connectivity</td>
<td>300 seconds or less</td>
<td>15-30 seconds</td>
</tr>
</tbody>
</table>

Configuring OSPF Route Advertisement

MX Security Appliances acting in VPN concentrator mode support advertising routes to connected VPN subnets via OSPF. This functionality is not available on MX devices operating in NAT mode.

An MX VPN concentrator with OSPF route advertisement enabled will only advertise routes via OSPF; it will not learn OSPF routes.
When spoke sites are connected to the VPN concentrator, the routes to spoke sites are advertised using an LS Update message. These routes are advertised as type 2 external routes.

BGP and Auto VPN

BGP VPNs are utilized for Data Center Failover and load sharing. This is accomplished by placing VPN Concentrators at each Data Center. Each VPN Concentrator will utilize BGP with DC edge devices. BGP is utilized for its scalability and tuning capabilities.

More information about implementing BGP and its use cases can be found in our [BGP documentation](#).

Auto VPN Technology Deep Dive

The MX Security Appliance makes use of several types of outbound communication. Configuration of the upstream firewall may be required to allow this communication.

Dashboard & Cloud

The MX Security Appliance is a cloud managed networking device. As such, it is important to ensure that the necessary firewall policies are in place to allow for monitoring and configuration via the Meraki dashboard. The relevant destination ports and IP addresses can be found under the **Help > Firewall Info** page in the dashboard.

VPN Registry

Meraki’s Auto VPN technology leverages a cloud-based registry service to orchestrate VPN connectivity. In order for successful Auto VPN connections to establish, the upstream firewall must allow the VPN concentrator to communicate with the VPN registry service. The relevant destination ports and IP addresses may vary by region, and can be found under the **Help > Firewall Info** page in the dashboard.

Uplink Health Monitoring

The MX also performs periodic uplink health checks by reaching out to well-known Internet destinations using common protocols. The full behavior is outlined [here](#). In order to allow for proper uplink monitoring, the following communications must also be allowed:

- DNS test to canireachthe.net
- Internet test to icmp.canireachthe.net

VPN Registry

In order to participate in Auto VPN an MX device must register with the Meraki VPN registry. The VPN registry is a cloud-based system that stores data needed to connect all MX devices into an orchestrated VPN system. The VPN registry is always on and always updating in the case of a connection failure. This means no manual intervention is needed in the case of reboots, new public IP addresses hardware failovers etc. The VPN registry stores the following information for each MX:

- Subnets (for creating the VPN route table)
- Uplink IP (public or private)
- Public IP

The process for adding a new MX into an infrastructure is as follows:
1. A new MX reports its uplink IP address(es) and shared subnets to the registry
2. The information is propagated to the other MXs in the infrastructure
3. The MX establishes the proper VPN tunnels
 1. The MX will try the registry-reported private uplink IP of the peer first
 2. If a connection to the private uplink IP of the peer fails, the MX will try the public uplink IP of its peer

Auto VPN Routing

The VPN Registry stores the relevant information including, local routes participating in VPN for a particular Meraki Auto VPN infrastructure. In the case of a failure, additional VPN device, or hub change the system automatically reconverges without any end user interaction. By updating all VPN routes to all devices in the system Auto VPN acts like a routing protocol and converges the system to maintain stability.

High Availability

<table>
<thead>
<tr>
<th>Key use case</th>
<th>Cost consideration</th>
<th>Failover time</th>
</tr>
</thead>
<tbody>
<tr>
<td>HW Redundancy</td>
<td>Mitigate an MX HW failure using 2 devices on the same broadcast domain</td>
<td>Two devices are required but only a single license</td>
</tr>
</tbody>
</table>
Hardware Redundancy in VPN Concentrator Mode

MX VPN Concentrator warm spare is used to provide high availability for a Meraki Auto VPN head-end appliance. Each concentrator has its own IP address to exchange management traffic with the Meraki Cloud. However, the concentrators also share a virtual IP address that is used for non-management communication.

MX VPN Concentrator - Warm Spare Setup

Before deploying MXs as one-arm VPN concentrators, place them into Passthrough or VPN Concentrator mode on the Addressing and VLANs page. In one-armed VPN concentrator mode, the units in the pair are connected to the network "only" via their respective ‘Internet’ ports. Make sure they are NOT connected directly via their LAN ports. Each MX must be within the same IP subnet and able to communicate with each other, as well as with the Meraki dashboard. Only VPN traffic is routed to the MX, and both ingress and egress packets are sent through the same interface.

MX VPN Concentrator - Virtual IP Assignment

The virtual IP address (vIP) is shared by both the primary and warm spare VPN concentrator. VPN traffic is sent to the vIP rather than the physical IP addresses of the individual concentrators. The virtual IP is configured by navigating to Security appliance > Appliance status when a warm spare is configured. It must be in the same subnet as the IP addresses of both appliances, and it must be unique. It cannot be the same as either the primary or warm spare’s IP address.

The two concentrators share health information over the network via the VRRP protocol. Failure detection does not depend on connectivity to the Internet/Meraki dashboard.

MX VPN Concentrator - Failure Detection

In the event that the primary unit fails, the warm spare will assume the primary role until the original primary is back online. When the primary VPN concentrator is back online and the spare begins receiving VRRP heartbeats again, the warm spare concentrator will relinquish the active role back to the primary.
concentrator. The total time for failure detection, failover to the warm spare concentrator, and ability to start processing VPN packets is typically less than 30 seconds.

MX Warm Spare Alerting

There are a number of options available in the Meraki dashboard for email alerts to be sent when certain network or device events occur, such as when a warm spare transition occurs. This is a recommended configuration option and allows a network administrator to be informed in the event of a failover.

The event, “A warm spare failover occurs,” sends an email if the primary MX of a High Availability pair fails over to the spare, or vice-versa.

This alert and others, can be referenced in our article on [Configuring Network Alerts in Dashboard](#).

If you are having difficulties getting warm spare to function as expected, please refer to our [MX Warm Spare - High Availability Pair document](#).

HW Redundancy in NAT mode

MX NAT Mode – Warm Spare

MX NAT Mode Warm Spare is used to provide redundancy for internet connectivity and appliance services when an MX Security Appliance is being used as a NAT gateway.

MX NAT Mode - Warm Spare Setup

In NAT mode, the units in the HA pair are connected to the ISP or ISPs via their respective Internet ports, and the internal networks are connected via the LAN ports.

WAN configuration: Each appliance must have its own IP address to exchange management traffic with the Meraki cloud. If the primary appliance is using a secondary uplink, the secondary uplink should also be in place on the warm spare. A shared virtual IP, while not required, will significantly reduce the impact of a failover on clients whose traffic is passing through the appliance. Virtual IPs can be configured for both uplinks.

LAN configuration: LAN IP addresses are configured based on the Appliance IPs in any configured VLANs. No virtual IPs are required on the LAN.

Additional warm spare configuration details can be found in our article, [MX Warm Spare - High Availability Pair](#).

MX NAT Mode - Virtual IP Assignment

Virtual IP addresses (vPs) are shared by both the primary and warm spare appliance. Inbound and outbound traffic uses this address to maintain the same IP address during a failover to reduce disruption. The virtual IPs are configured on the Security Appliance > Monitor > Appliance status page. If two uplinks are configured, a vIP can be configured for each uplink. Each vIP must be in the same subnet as the IP addresses of the appliance uplink it is configured for, and it must be unique. It cannot be the same as either the primary or warm spare's IP address.

MX NAT Mode - Failure Detection

There are two failure detection methods for NAT mode warm spare. Failure detection does not depend on connectivity to the Internet / Meraki dashboard.

WAN Failover: WAN monitoring is performed using the same internet connectivity tests that are used for uplink failover. If the primary appliance does not have a valid Internet connection based on these tests, it will stop sending VRRP heartbeats which will result in a failover. When uplink connectivity on the original primary appliance is restored and the warm spare begins receiving VRRP heartbeats again, it will relinquish the active role back to the primary appliance.

LAN Failover: The two appliances share health information over the network via the VRRP protocol. These VRRP heartbeats occur at layer 2 and are performed on all configured VLANs. If no advertisements reach the spare on any VLAN, it will trigger a failover. When the warm spare begins receiving VRRP heartbeats again, it will relinquish the active role back to the primary appliance.

MX NAT Mode – DHCP Synchronisation

The MXs in a NAT mode high availability pair exchange DHCP state information over the LAN. This prevents a DHCP IP address from being handed out to a client after a failover if it has already been assigned to another client prior to the failover.

DC-DC Failover - Hub/Data Center Redundancy (Disaster Recovery)

Meraki's MX Datacenter Redundancy (DC-DC Failover) allows for network traffic sent across Auto VPN to failover between multiple geographically distributed datacenters.
DC Failover Architecture

A DC-DC failover architecture is as follows:

- One-armed VPN concentrators or NAT mode concentrators in each DC
- A subnet(s) or static route(s) advertised by two or more concentrators
- Hub & Spoke or VPN Mesh topology
- Split or full tunnel configuration

Operation and Failover

Deploying one or more MXs to act as VPN concentrators in additional data centers provides greater redundancy for critical network services. In a dual- or multi-datacenter configuration, identical subnets are advertised from each datacenter with a VPN concentrator mode MX.
In a DC-DC failover design, a remote site will form VPN tunnels to all configured VPN hubs for the network. For subnets that are unique to a particular hub, traffic will be routed directly to that hub. For subnets that are advertised from multiple hubs, spoke sites will send traffic to the highest priority hub that is reachable.

When an MX Security Appliance is configured to connect to multiple VPN concentrators advertising the same subnets, the routes to those subnets become tracked. Hello messages are periodically sent across the tunnels from the remote site to the VPN hubs to monitor connectivity. If the tunnel to the highest priority hub goes down, the route is removed from the route table and traffic is routed to the next highest priority hub that is reachable. This route failover operation only applies when identical routes are advertised from multiple Auto VPN hubs.

Concentrator Priority

When multiple VPN hubs are configured for an organization, the concentrator priority can be configured for the organization. This concentrator priority setting determines the order in which VPN mesh peers will prefer to connect to subnets advertised by multiple VPN concentrators.

This setting does not apply to remote sites configured as VPN spokes.

Other Datacenter Considerations

When implementing a DC-DC architecture, a warm spare concentrator configuration (see warm spare section above) and OSPF route advertisement should always be taken into consideration for MXs acting as VPN concentrators in a datacenter. Additionally, route flow logic should be considered for all applications in the deployment environment to ensure availability requirements are met. To assist with better understanding DC-initiated flows, please refer below.

Supported VPN Architectures

VPN Topologies

There are several options available for the structure of the VPN deployment.

Split Tunnel

In this configuration, branches will only send traffic across the VPN if it is destined for a specific subnet that is being advertised by another MX in the same dashboard organization. The remaining traffic will be checked against other available routes, such as static LAN routes and third-party VPN routes, and if not matched will be NATed and sent out from the branch MX unencrypted.
Full Tunnel

In full tunnel mode all traffic that the branch or remote office does not have another route to is sent to a VPN hub.
Hub and Spoke

In a hub and spoke configuration, the MX security appliances at the branches and remote offices connect directly to specific MX appliances and will not form tunnels to other MX or Z1 devices in the organization. Communication between branch sites or remote offices is available through the configured VPN hubs. This is the recommended VPN topology for most SD-WAN deployments.

- **Hub and Spoke - Total Tunnel Count** = \((H \times (H-1))L_1 + S \times N \times L_2\) - Where \(H\) is the number of hubs, \(S\) is the number of spokes, \(N\) is the number of hubs each spoke has and \(L\) is the number of uplinks the MX has (\(L_1\) for the hubs, \(L_2\) for the spokes). If each MX has a different number of uplinks then a sum series, as opposed to a multiplication will be required.

For example, if all MXs have 2 uplinks, we have 4 hubs and 100 spokes, then the total number of VPN tunnels would be \(12 + 1200 = 1212\)

Standard Hub & Spoke
How it works:

Utilizing the standard Meraki Auto VPN registry to ascertain how the VPN tunnels configured need to form (i.e. via public address space or via private interface address space) as described in Configuring Site-to-site VPN over MPLS.

When should it be used?

Whenever possible. It is strongly recommended that this model is the 1st, 2nd and 3rd option when designing a network. Only if the deployment has an exceptionally strong requirement should one of the following hub and spoke derivatives be considered.

VPN Mesh

It is also possible to use a VPN mesh configuration in an SD-WAN deployment.

In a mesh configuration, an MX appliance at the branch or remote office is configured to connect directly to any other MXs in the organization that are also in mesh mode, as well as any spoke MXs that are configured to use it as a hub.

- **Full Mesh - Total Tunnel Count** = \((N \times (N-1)xL)\) - Where N is the number of MXs and L is the number of uplinks each MX has.

For example, if all MXs have 2 uplinks and there are 50 MXs, then the total number of VPN tunnels would be 2450 and every MX would have to be able to support 196 tunnels from the number of VPN peers for a single MX (49) multiplied by the number of VPN tunnels between each peer (4), in this case, we would need 50 MX100s as a minimum.
Inline Hub, Hub & Spoke

How it works:
Mostly the same as standard hub and spoke, with the exception that the hub is inline (i.e. in NAT mode) for the traffic flows egressing to the Internet from the MPLS/private network. This works by leveraging the ‘form VPN on LAN’ functionality, in which the VPN tunnel from either RS-A & RS-B with ‘form’ on the LAN interface of the hub MX as opposed to ‘looping back’ over the WAN interface.

When should it be used?
This is used when the customer wants to leverage the advanced security features of the MX but does not have the budget to stretch to an additional dedicated (non-Auto VPN) MX perimeter device. As such, this model should only come up in price sensitive deals, our preference should be to solve this problem commercially as opposed to technically, as it makes technical and logical sense to segment the use functions of security and VPN termination from one another. However, this model can also be used in DMZ deployments too, in which the customer wants to route VPN traffic flows via alternative interfaces (than the WAN ports) directly from the MX.

Regional Hub & Spoke
How it works:

Again, this is exactly the same from a configuration perspective as a standard hub and spoke, however it allows for the introduction of regionalization for customers with interstate and/or international scale and range. The remote sites have a regional hub configured and a specific (multiple potentially) data center hub too. This allows for both greater scale and regional breakout.

This deployment model is extremely useful when voice traffic is in play (e.g. no need to go through Germany to make a local phone call in France)

When should it be used?

There are multiple reasons that could direct you toward a regional design, the most likely is to help with tunnel count scaling, as this approach limits the number of tunnels on hub MXs. Also, if allows for lower capacity regional hub MXs to be specified. The second reason is likely due to process, either company or due to the geography of the customer; as customers have traditionally geographically segmented their businesses, and hence networks. As there is typically little value in facilitating direct communication between a remote site in the Americas to a hub site in east Asia (without a specific business case), additional such connectivity is typically costly. This approach allows customers to duplicate that regionalisation with the Meraki Auto VPN.

Hierarchical Hub & Spoke
How it works:

This is broadly similar to the standard hub and spoke with the exception that, with assistance from Meraki support, the customer can selectively break various tunnel connections. This results in separate virtual groups within the Auto VPN domain.

When should it be used?

Almost never. However, edge cases do exist in which customers essentially operate as managed service providers for their customers and require some form of logical segmentation of the various elements of their business (to extend the analogy, their customers). This is sometimes an issue in ISO27001 compliant customers with poorly (from our perspective) information security management systems (ISMS) boundaries. This is an emergency solution and it is typically better to avoid such designs than it is to implement the above. As such, it is ONLY included for completeness.

China Auto VPN

With regulatory constraints imposed by the Chinese government, specific architecture requirements are needed to deploy and interconnect the Auto VPN domain within China to the rest of the world.

Secure VPN technology provides the most cost-effective connectivity under most circumstances. Chinese regulations have placed restrictions affecting VPN technologies across international borders. For enterprises to achieve cross-border connections, there are two options.

1. The enterprise can directly lease international dedicated lines from the 3 Chinese telecom carriers (China Telecom, China Mobile, China Unicom) in China.
2. Additionally, the enterprise can directly delegate a foreign telecom carrier with a presence in China to rent the international dedicated line (including VPN) from the 3 Chinese telecom carriers, and connect the corporate private network and equipment.

Note: The above cross-border connection methods must be used only for internal data exchange and office use. (Current as of 3 February 2018, subject to further regulatory developments.)

All devices located within mainland China will connect to Meraki China servers also located within China. Currently, only enterprise licensing is available for MX devices located within China.

China Auto VPN Architecture

In the above diagram, we are utilizing Meraki Auto VPN to connect the enterprise sites inside China. The above diagram also demonstrates the Chinese government approved dedicated circuits connecting the Chinese parts of the enterprise to the rest of the global enterprise. Dynamic routing such as BGP or OSPF can be utilized to exchange routing information between the domains.